

# An exact and efficient 3D mesh intersection algorithm using only orientation predicates

Salles V. G. Magalhães<sup>1,2</sup>, W. Randolph Franklin<sup>2</sup>, Marcus V. A. Andrade<sup>1</sup>

<sup>1</sup>Universidade Federal de Viçosa, Brazil <sup>2</sup>Rensselaer Polytechnic Institute, USA



## **Intersecting meshes**

- ➤ Objective: Efficiently compute the exact intersection between two triangular meshes.
- ➤ Applications in CAD, GIS, Additive Manufacturing, etc.
- Example: 3D mesh may represent objects in a CAD system.
- **≻**Challenges
- ➤ Special cases and roundoff errors
- ➤ Applications may give inconsistent results or even crash
- ➤ People want exactness <u>and</u> performance.



#### **Novelties**

- ➤ Parallel: for multi-core computers
- ➤ Grid indexing: efficient parallel uniform grid
- ➤ Special cases: carefully treated using Simulation of Simplicity (SoS).
- ➤ All computation: exact (GMP rationals)
- ➤ For triangulated meshes:
- ➤ Widely used
- ➤ Simple representation
- ➤ Supports multi-material and "internal structure"

#### Data representation

- ➤ Triangular soup:
- ➢Oriented triangles.
- Each triangle stores the ids of the two objects it bounds (on the negative and positive sides).
- ➤Supports:
- ✓ Multiple components
- √ Components with different ids ("materials")
- ✓ Non-manifoldness
- ✓ Nested components
- × Self intersections → contradictions



#### The algorithm

- ➤ Tries to process triangles independently (→ parallelism)
- ➤ Intersect pairs of triangles
- ➤ Grid index
- Fast triangle-triangle intersection algorithm (Möller)



- **≻** Retesselation
- Triangle split at intersection edges
- ➤ Polygonal subdivision is created and retriangulated (ear-clipping)



- ➤ Triangle classification
- ➤ Input and new triangles are classified.
- ➤If t was bounding objects (a,b) and is inside object c of the other mesh, in the output t will bound  $(a \cap c, b \cap c)$  (other booleans  $\rightarrow$  similar strategy)
- $\triangleright$  How to determine in what object of the other mesh t is?  $\rightarrow$  traverse mesh and label accordingly
- ➤ Start with an input vertex: point location → location of triangle containing it.
- ➤ Two triangles share a "regular edge" → they are in the same object.
- ➤ Two triangles share an edge generated from an intersection → they are in different objects (triangle labels give the locations).

## **Special cases**

- ➤ Challenging, hard to treat
- ➤ Solution: Simulation of Simplicity
- Points symbolically perturbed with infinitesimals (ε does not "exist", simulated effect)
- ➤If input is non-degenerate → no change.
- Performance
- ➤Otherwise  $\rightarrow$  SoS  $\rightarrow$  no coincidence & globally consistent result.



- ➤ Meshes are symbolically perturbed
- $\rightarrow$  Mesh 0:  $(x,y,z) \rightarrow (x,y,z)$
- $\rightarrow$  Mesh 1:  $(x,y,z) \rightarrow (x+\epsilon,y+\epsilon^2,z+\epsilon^3)$

### ➤ After perturbation:

- A vertex from one mesh will never be on the plane of a triangle from the other mesh.
- ➤ An edge from one mesh will never intersect an edge from the other mesh.
- Two coplanar triangles from different meshes will never intersect.

## Implementation

- > Two versions of each algorithm: one using only orientation predicates.
- ➤ Tri-tri intersection: 5 3D orientations for each edge-triangle (Segura and Feito).



Retesselation: sort intersection points along edges: 3D orientation  $h_{\epsilon}$   $h_{\epsilon}$ 



- Extracting faces from retesselation: 1D and 2D orientation.
- ➤ Ear-clipping: detecting convex vertices and point in triangle → 2D orientation
- ➤ Challenge: vertices generated from intersection may be argument of the predicates → represent them as pairs (edge,triangle).

#### Performance experiments

- ➤ Dual 8-core Xeon, 128 GB of RAM
- ➤ Algorithm still under development (can be improved)
- Comparison with LibiGL (<u>exact</u> algorithm, resolves self intersections)

| Input        |              | Thousand faces |        | Times (s) |        | Speedup |
|--------------|--------------|----------------|--------|-----------|--------|---------|
| Mesh 0       | Mesh 1       | Mesh 0         | Mesh 1 | Our alg.  | LibiGL | Speedup |
| BumpySphere  | BumpyTorus   | 11             | 34     | 0.27      | 4.49   | 16.4    |
| RoundOcta    | SharpSphere  | 33             | 21     | 0.09      | 1.74   | 18.4    |
| Camel        | Camel        | 69             | 69     | 20.04     | 16.71  | 0.8     |
| Bimba        | NewYear      | 150            | 10     | 0.24      | 5.13   | 21.5    |
| Camel        | Armadillo    | 69             | 331    | 0.41      | 14.31  | 35.0    |
| Armadillo    | Armadillo    | 331            | 331    | 94.16     | 75.81  | 0.8     |
| Th10k:461112 | Th10k:461115 | 805            | 822    | 2.79      | 64.69  | 23.1    |
| Kitten       | RedCircBox   | 274            | 1402   | 1.23      | 36.28  | 29.5    |
| Bimba        | Vase         | 150            | 1792   | 1.86      | 65.44  | 35.2    |
| Th10k:226633 | Th10k:461112 | 2452           | 805    | 3.22      | 119.97 | 37.3    |
| Ramesses     | Ram.Transl   | 1653           | 1653   | 4.61      | 102.72 | 22.3    |
| Ramesses     | Ram.Rotated  | 1653           | 1653   | 6.55      | 122.46 | 18.7    |
| Horse        | Neptune      | 97             | 4008   | 4.42      | 103.25 | 23.4    |
| Neptune      | Ramesses     | 4008           | 1653   | 5.49      | 150.03 | 27.3    |
| Neptune      | Nept.Transl. | 4008           | 4008   | 10.84     | 247.90 | 22.9    |

For the largest dataset (last row): 5 million pairs of triangles tested for intersection, 78 thousand pairs of triangles intersect, 389 thousand triangles generated from retesselation.

#### Conclusions, limitations, future work

- ➤ Parallel and efficient machines --> we can afford exact algorithms.
- ➤ Future work:
- >Improve efficiency
- ➤ Validate results
- Experiments with huge meshes, tetrahedral meshes, etc.
- Compare with more methods (CGAL. QuickCSG, etc)
- ➤ Floating-point input → exact and more efficient predicates
- ➤ Result is valid for the symbolically perturbed input
- $\triangleright$ If output is considered without the perturbation  $\rightarrow$  it may contain polyhedra with volume 0, triangles with area 0, etc.
- ➤ Perturbed output: also useful
- Future work: how to remove perturbation from output?
- ➤ Source code: freely available (soon on Github)

#### Acknowledgements

This work was partially supported by Capes (Ciência Sem Fronteiras), FAPEMIG and NSF grant IIS-1117277





