Averaging compatible surfaces for free-form tolerancing

“How to improve your manufacturing accuracy / reliability?”

Mukul Sati, Jarek Rossignac

Georgia Institute of Technology, Atlanta, Georgia, USA

Overview

▶ Inconsistent output ≠ Consistently bad output.
▶ There are consistent & inconsistent machining errors.
▶ Analyzing average error and error variability separately facilitates decision making.
▶ Nominal ≠ Average : Better plan?
▶ Variability > Maximum : Better machine?

Computing average and variability

▶ Input: Nominal shape \(N \), machined shapes \(M_i \).
▶ Output: Average mesh, variability.

Algorithm:
▶ Sample \(M_i \) to obtain machined shapes point clouds.
▶ Filter and register point clouds.
▶ Triangulate each point cloud. item Compute average triangle mesh and correspondences:

\[
\text{Input} \quad \text{Candidate mesh, Translated point clouds} \quad \text{Triangle mesh averaging algorithm} \quad \text{Average mesh} \quad \text{Output} \quad \text{Average mesh + Correspondences}
\]

▶ Compute variability from correspondences.

Results

▶ Comparison with gradient descent:
▶ Snap iteration converges in 2-3 steps.
▶ Snap iterations produce low distortions.

▶ Snap:

Salient details

Compatible smooth manifolds and the Valley Average

▶ Set of embedded manifolds compatible if pairwise closest projection maps are homeomorphisms.
▶ A compatible set has a natural average - the valley average - a connected subset of points that lie on the valley of the sum of squared distance field \(Q \).

Averaging planes

▶ Planes compatible when hessian of \(Q \) is a positive definite quadratic form.
▶ Valley average of a set of planes is a plane.
▶ Coincident planes:
 ▶ Average is coincident.
 ▶ Maximizes sum of unit circle projection areas.
▶ Non-coincident planes:
 ▶ Average directed as coincident case
 ▶ Incident to point minimizing \(Q \).
▶ Numerically robust formula to project on average.

Snap iterations

▶ A snap iteration comprises:
▶ Closest project: Given candidate point \(p \), compute closest projection to \(i \)th mesh \(p_i \).
▶ Average computation: Compute average plane \(P \) using tangent plane approximation \(P_i \) at \(p_i \).
▶ Projection on average plane: Project \(p \) onto \(P \).