Towards Thick Shells with Isostatic Microstructure
Jörg Peters, Meera Sitharam, Jeremy Youngquist
University of Florida

Motivation
- Manufacturing at micro-scale requires accurate material structure representation in order to predict physical properties
- Therefore a variety of constrained, isostatic, irregular micro-structures need to be accurately and efficiently represented
- Self-similar and foliated (layered) structures support design across scales

Inspiration from Nature

Analysis
- Classical Finite Element Analysis is not enough!

Approach
- Input: Coarse macro-geometry with physical characteristics and response
- Output: 3D framework of interconnected 2D isostatic layers suitable for manipulating, analyzing, and optimizing design of physical characteristics
- Steps:
 - Fine macro-geometry
 - Foliation of enclosed solid
 - Layers conforming to the foliation
 - Realistic fabricated/assembled material micro-structure
 - Provably complete generators for all irregular isostatic frameworks
 - Self-similarity and repetition for hierarchical representation
 - Gluing to boundary or neighboring regions while preserving isostaticity

Foliation of solid

Mapping micro-structure onto and stacking foliation layers

Generating irregular isostatic frameworks

Results
- Distance defines isostatic micro-structure (realizing the structure)
 - Algorithm for finding a convex search space
 - Algorithm for constructing the structure

References
- Arijit K. Sengupta, Theory of Failure, Ch2
- T. Björkman et al, Scientific Reports 3, Article number: 3482
- C. Jiang et al, Eurographics Symposium on Geometry Processing 2014, Volume 33, Number 5
- K. Karčiauskas and J. Peters, CAD (SPM2016), Volume 78, 48-59
- M Killian et al, J. of Shoulder and Elbow Surgery, Volume 22, 228-237
- T. Nguyen et al, AMC, Volume 272, Number 1, 148-158
- Qiang Lu and Baidurya Bhattacharya, 2005 Nanotechnology 16 555
- I. Vu et al, Solid Freeform Fabrication Symposium, 959-982

Acknowledgements
- DARPA TRADES HR00111720031, Jan Vanderbrande
- NSF DMS 1122541, 1564480, 1563214