Motivation: Voronoi Diagrams of Spheres

- Not extensively investigated
- Lack of robust algorithms
- Especially for non-general position and disconnected Voronoi edges
- Many current applications simplify the problem
 - Assume that all atoms are 3D points
- Example application: Proteins
 - Voronoi diagrams are often used to analyze structural properties of molecules

Background

- Bisectors of spheres
 - The locus of points that are equidistant from two spheres
 - Either a plane or a hyperbolic surface
 - Assumption: no completely contained spheres
 - (allow partially intersecting)
- Voronoi diagrams of spheres in 3D
 - The surface of a Voronoi cell is the lower envelope of its corresponding bisectors
 - In general position, numbers of spheres contributing to:
 - Voronoi vertex: 4; Voronoi face: 3; Voronoi edge: 2; Voronoi cell: 1
 - In non-general positions, there are more contributing spheres

Sampling Rays and Calculating Bisectors

- Sampling rays from spheres
 - Parameterizing bounding cube for each sphere (uniformly subdivided domains in u and v)
 - Each face of the bounding cube maps to 1/6 of the sphere
 - Shoot rays from the sphere center through each u-v point
 - Ray function:
 \[r(t) = r(x(t), y(t), z(t)) = 0 + t \cdot n \]
- Calculating the bisector functions
 - The bisector surfaces between two spheres:
 \[\frac{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 - R_1^2}{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2 - R_1^2} = 1 \]
 - Transforming to implicit hyperbolic surface equation:
 \[A_1 x^2 + B_1 y^2 + C_1 z^2 + D_{1xy} + D_{1xz} + D_{1yz} + E_x + E_y + E_z + F + G = 0 \]

Calculating Sample Points on Voronoi Faces

- Combining ray functions and bisector functions
 - For the “base” sphere in each Voronoi cell, test all bisectors corresponding to each ray shot from the base sphere
 - Each ray either shoots to infinity or intersects the lower envelope at a Voronoi face sample point
 - Solve the functions:
 \[u \cdot t^2 + b \cdot t + c \geq 0 \]
 \[A_2 x^2 + B_2 y^2 + C_2 z^2 + D_{2xy} + D_{2xz} + D_{2yz} + E_x + E_y + E_z + F + G = 0 \]
- Visualization of color-coded face sample points per base sphere
 - The color of each sample point is decided by its corresponding sphere
 - Base sphere as black
 - We also get color code on u-v domain (bounding cube)

Determining Presence of Voronoi Vertices

- U-V grid cells
 - Each group of four neighboring face sample points on the bounding cube
 - “Marching” through the grid cells, check if the four corners have three or more different colors
 - Three or more colors \(\rightarrow \) the corresponding Voronoi faces may intersect in a Voronoi vertex

Calculating Voronoi Vertices’ Position

- Newton-Raphson method in 3 variables
 - Calculate xyz coordinates of Voronoi vertex in each 3-color grid cell
 - Equivalent to solving three bisector equations simultaneously
 - Use the average of xyz coordinates of the four corners of the grid cell as start point for iteration
 - Def: 3x3 Jacobian

Results

- Handling non-general position and large inputs
 - A Voronoi cell containing a high-order degree Voronoi vertex
 - Voronoi diagrams of Protein Data Bank ID “1bh8” consisting of 2161 atoms
 - Timing results (seconds) for face samples and Voronoi vertices

Contributions and Future Work

- A novel approach to compute Voronoi diagrams of spheres
 - Sample based + lower envelope + GPU parallel computing
- Accurately calculate Voronoi vertices’ geometry
 - Use the samples to initialize numerical iteration
 - Guarantee the accuracy within user-defined tolerance
- This algorithm is robust for
 - Thousands of input spheres representing actual protein molecules
 - Spheres not in general position, handling Voronoi vertices with degree greater than four
- Future work:
 - On u-v domain (bounding cube), trace Voronoi edges by particular color patterns
 - Apply approach to more complex primitives